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Abstract - A conformal transformation method is applied to the determination of the shape of the interface 
between a solidified layer formed on the inside of a cooled pipe of rectangular cross-section and a warmer 
flowing liquid. The convective heat transfer from the liquid to the interface, in the steady state case, balances 
the heat transfer by conduction through the solidified layer. This heat transfer, for pipes of various aspect 
ratio is computed as a function of a non-dimensional parameter involving the interracial convection 
coefftcient and the thermal conductivity of the layer. It is found that the extent of solidifi~tion displays a 

‘critical thickness’ characteristic. 

NOMENCLATURE 

A, B, C, D, G, K, parameters used in the evaluation of 
various integrals in the Appendix ; 

4 dimensionless width of pipe, al/a; 

b, dimensionless height of pipe, b’,/u; 

d, solidified layer thickness [distance 4,3 in Fig. 

l(b)1 ; 
El, E2, E3, parameters related to integrals in text; 

F, Legendre integral of the first kind; 

h, interfacial heat transfer coefficient; 
I,, I,, 13, I,, I,, I,, various integrals in text; 

k, thermal conductivity of solidified layer; 

I(,* k( Tf - Tw),‘h;( T; - T;) ; 

K2, k( 7-f - T$)/&( T; - T,); 

L, length of pipe; 
nr, n, parameters in the t-plane; 

49 heat fiux ; 

:: 

heat transfer rate through solidified layer; 

QIkL(T, - 7’:) ; 
s, coordinate normal to interface; 

rr auxiliary half-plane; 

7-5 dimensionless temperature (T’ - Ts)/ 

(T; - K); 

W, complex function - T + i@; 

x, Y, dimensionless coordinates, x’/ct, y’,Ju ; 

Z, x + iy. 

Greek symbols 

a, k( T; - T#h( T; - 7’;) ; 

*3 coordinate in W-plane ; 

I;: 
complex function = d W/dz ; 
argw; 

i? 
log d W/dz ; 
amplitude angle in Legendre function. 

Subscripts 

:: 
refers to properties of the liquid ; 
refers to properties of the interface; 

W, refers to properties of the pipe wall; 

Primes refer to quantities in dimensional form in 
Fig. l(a). 

INTRODUCMON 

THE SOLIDIFICATION of layers adjacent to solid surfaces 
occurs in many industrial situations including, for 
example, the icing in cryogenic installations, the 
freezing of liquid metals and foods, and geophysical 
phenomena such as lava flow. The problem discussed 
in this paper is concerned with the solidification of 
a layer inside a pipe of rectangular cross-section when 
the pipe wall is cooled and a warmer flowing liquid 
passes along the axis of the pipe. The resultant 
interface has a form which is unknown a priori and the 
purpose here is to locate the interface for various 
imposed boundary conditions, and to compute the 
corresponding heat transfer through the layer. 

A survey of the available literature indicates that 
various attempts have been made to solve the so-called 
‘free boundary problem’ but with few exceptions the 
problems have been tackled on a one-dimensional 
basis. In two-dimensions several approximate and 
numerical methods have been related in cases where 
various wall geometries were chosen. An approximate 
integral-method of boundary layer theory was applied 
by Poots [l] to determine the location and time- 
history of the solidification front for a square-section 
prism. These results were in general agreement with 
those of Allen and Sevem [2] obtained using a 
relaxation method, and where the liquid phase was 
assumed to be at the fusion temperature. The effect of 
liquid solidification at the inner surface of a circular 
pipe on the heat transfer and on the pressure drop, was 
considered by Zerkle and Sunderland [3]. Experimen- 
tation showed that the effects of free convection within 
the Rowing liquid could produce a significant depar- 
ture from theory. Siegel [4] used a conformal transfor- 
mation technique to determine the shape of the two- 
dimensional solidified layer formed on a cooled plate 
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immersed in a warm Rowing liquid. The results in the 
form of non-dimensional parameters provided the 
inspiration for this paper. A good approximation to 
the solidification interface was obtained by Stephan 
[5] by assuming a parabolic tem~rature distribution 
in the solid phase which satisfies all boundary con- 
ditions, but satisfies the heat-conduction equation 
only at the interface. A solution to the transient case of 
freezing of a liquid lowing along a circular pipe was 
obtained by &isik and Mulligan [6]. In obtaining the 
solution certain assumptions were made which nec- 
essarily restricted the analysis to regions where the rate 
of change of layer thickness was small. The transient 
problem on a wall maintained at constant temperature 
was analysed by Savino and Siegel [7] using an 
iteration technique which displayed rapid conver- 
gence. Lazaridis [S] applied the Murray-Landis [9] 
method to analyse the muiti-dimensional solidifi- 
cation problem in a square region. Comparison with 
existing solutions showed satisfactory agreement. 
Rathjen and Jiji [lo] presented an analytical solution 
to the two-dimensional Neumann problem in a corner 
using the method attributed to Lightfoot [ll]. This 
method was also applied by Budhia and Kreith [ 121 to 
freezing or melting in a wedge shaped enclosure the 
surfaces of which were maintained at uniform, but not 
necessarily equal, temperatures. Kroeger and Ostrach 
[13] simulated a continuous metal casting process 
taking into consideration the effects of natural con- 
vection in the liquid pool. It was found, for the range of 
parameters considered, that even for strong natural 
convection there was little or no effect on the position 
of the interface. Saitoh [14] extended the change of 
variable technique of Landau, to multi-dimensional 
problems of freezing in arbitrary domains. Examples 
of the Stefan type freezing were performed in regular 
squares, triangles and ellipses. 

FORMULATION OF THE PROBLEM 

Conformal transformation techniques have been 
used in many branches of engineering not least for 
their simplicity and versatility. They are particularly 
attractive of course when applied to Laplacian fields 
when the governing equation remains invariant, al- 
though non-Laplacian fields have been greatly sim- 
plified in some cases. The combination of conformal 
transformations with the equally powerful hodograph 
technique, which has been mainly applied to the 
solution of problems in fluid mechanics [15] and more 
recently in electrostatic problems [16], provides a 
technique of great benefit to the problem considered 
here. 

A section of long pipe is illustrated in Fig. l(a) where 
the dimensions in the Y-plane are chosen to be 2~’ and 
2b’. The walls of the pipe are cooled to a constant 
temperature ‘IL whilst the warmer liquid flows axially 
down the pipe. The shape of the resulting interface 
changes with time until, in the steady case, the heat 
transferred to it by the flowing liquid equals the heat 
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FIG. l(a). Sectional view of pipe in z’-plane, indicating 
solidified layer. (b) Sectional view of a quarter of the pipe in 

the z-plane showing dimensionless boundary conditions. 

conducted through the solidified layer to the walls of 
the pipe. 

BOUNDARY CONDITIONS 

On the interface, two boundary conditions are 
required for a boundary of initially unspecified lo- 
cation. The first is taken to be T; = constant, which is 
satisfied to correspond to the condition that on the 
interface the temperature is equal to the fusion tem- 
perature. The second condition is concerned with the 
heat flux. In the real case this might be expected to 
vary, but not greatly, around the boundary. However, 
in the absence of more detailed experimental data 
appropriate to the fully-developed turbulent flow 
through a duct of any cross-sectional profile, this 
condition is taken as the usual engineering approxi- 
mation Nu = Q/kdAT, where the temperature differ- 
ence in the present case is AT = T; - T, and where the 
‘bulk temperature T; of the liquid is defined as T; = 
f puT'dA/ni with the usual notation. 

Hence, on the interface, the shape of which is 
unknown, the boundary conditions are 

(a) q = k8T’/ds’ = h( T; - T;) ; 

and 

(b) T’ = T; 
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where s’ is a coordinate in the z’-plane normal to the 
interface and directed as shown in Fig. l(a). Defining 

T= (T’ - TJ(T> i Ta) 

and 

c( = k(T, - T:)/h(T; - T;) 

it follows that the above conditions become 

(a) aT/ds = 1 

and 

(b) T= 1 

(1) 

where s = s’/u, x = xl/u, y = y’lu, a = a’Ja and b = 
b’/a. 

Similarly on the pipe wall the boundary condition 
becomes 

T= 0. (2) 

Thus the problem in the z-plane is as shown in Fig. l(b) 
where, because of symmetry, only a quarter of the pipe 
is shown. 

THEORY 

The conjugate functions chosen to represent the 
problem are T the temperature and $ the flux function 
($ = constant gives locus of heat flux vector). Both T 
and $ satisfy Laplace’s equation and of course the 
usual Cauchy-Riemann equations. Hence a new com- 
plex potential W can be defined following [4], as 

W(z)= -T+i$ (3) 

which, like T and $, will be analytic. Differentiating 
equation (3) it follows that 

d Wldz = - aTlax + id$/ax 

and using one of the Cauchy-Riemann equations, viz. 

aTlax = -alLjay and aTlay = a*jax (4) 

it follows that 

dW/dz = -aT/& + idT/ax = o (say). (5) 

Taking the natural logarithm of both sides of equation 
(5) gives 

R = log,dW/dz = loglwl + iargw (6) 

i.e. 

= log(gradTl + itI 

R = logldT/dsI + i0 (7) 

where 0 = argo, the argument of w. The problem in 
the z-plane, with an unknown boundary shape (456) in 
Fig. l(b) has now been re-posed in the R-plane,* where 
the coordinates are 

* Referred to, in fluid mechanics, as a logarithmic hodo- 
graph plane. 

aT I I - aTlay - 
as 

and 0 = arctan ~ . [ 1 aTfax 

Thus the R-plane, seen in Fig. 2(a), comprises a semi- 
infinite region (123456) the boundary of which is 
rectilinear, corresponding to conditions of either con- 
stant temperature gradient or constant temperatures, 
respectively. 

From equation (6) it can be seen that the profile in 
the z-plane can be computed from 

(8) 

only if W is a known function of R. To obtain this 
functional relation it is now necessary to consider the 
boundary in the W-plane, corresponding to that in the 
z-plane. This is shown in Fig. 2(b), where it can be seen 
that the boundary is composed of two rectilinear 
portions at constant T and two at constant $. The 
width of the rectangular region is unity, corresponding 
to the temperature difference, in dimensionless form, 
between the interface and the pipe wall. 

An auxiliary transformation is now effected between 
both the Q- and W-plane and a half-plane called the t- 
plane. The t-plane can be seen in Fig. 2(c), where, for 
convenience, the origin in the W-plane (point 2) is 
chosen to map into the point at infinity in the t-plane. 
The Schwarz-Christoffel transformation is used to 
effect both transformations, and in its application 
firstly between the R-plane and the t-plane, three of the 
t-values can be assigned arbitrarily (see for example 
[17]). In this respect the values for t at the points 2,4 
and 6 are chosen to be co, 1 and 0, respectively. Hence 
the relation between the R-plane and the t-plane 
becomes 

which on 
evaluated 

dR 

dc=\/(t?)& 

integration and after constants have been 
gives : 

a = -log, [J(t - 1) + $1. (9) 

On the second application of the Schwarz-Christoffel 
transformation to the W-plane, it is found that 

dW c2 -= 
dt ,/(t - l)JtJ(t - m),/(t - n) 

(10) 

where the points 1 and 3 in the R-plane are chosen to 
map into the points t = M and t = n, respectively, the 
values of which becoming parameters in the problem. 
From the configuration of points in the t-plane, the 
only constraints on m, n are that m < 0 < 1 < n. The 
constant C2 is a scaling factor which is evaluated later. 

Equations (8), (9) and (10) then give, for the 
coordinates of points in the z-plane 

s dz = C,(I, + I,) (11) 
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where 

I,=. jt&)J(t-n)> 1 
I2 = .r Jet - l),!(t: m)J(t - n) . 

From a consideration of Figs. l(b) and 2(c) it can be 
seen using equation (11) that 

ih = C2[l, + 1,Jz; 
and (12a) 

u = CJI, + 1J&. 

Writing 

E, = [Ii + 12]n+z and E2 = [I, + 12];~ 

it can be seen that E, is real and E2 is imaginary; hence 

and 
C2 = ~/I/E, 

(12b) 
C, = -ia/E, 

where E, = R2/i and real. 
Equations (12b) indicate firstly the value of C2 and 

secondly the fact that for a square-section pipe E, 

= -E,. For integration along (456) to obtain the 
interfacial shape, 0 5 t < 1 and in this range I, is 
imaginary and I, is real. If t = fis a point in (0,l) then 

and (13) 

s S(i) 

dy = -IC2 0 s : J[(t - ,,td’ l)(t - m)] . 

Non-dimensionally these equations become 

1 s XII7 l(i) 
_ dx = and dy = 

a o 

4 
3 

1 I 
1 

+ 

1 (14) 

where I,, I, are the respective integrals in equations 

(13). 
The heat flow through the solidified layer into the 

cold pipe is 

Q=-L :kg 
s 

2 dT 
dy’-L k-dx’ 

1 w 

where L is the length of the pipe. 
In dimensionless form 

Q = kL(7’; - TV) 
Q = -lIgdy-j:Fdx. 

Using equation (4) 

= ti(2) - ti(3) - $(2) + G(l) 

= 1(/(l) - 11/(3) 

= $(6) - 11/(4) [from Fig. 2(b)]. 

But 

$(6) - $(4) = Im[W(6) - W(4)] = Im 
OdW 
1 dtdt. 

Hence, from equation (10) 

’ Q = -Im(C,) x 
s oJ(r-l)JtJ;1:-m)J(t-n). 

(15) 

Also from Fig. 2(b), T(4) - T(3) = 1. hence 

- 1 = Re [W(4) - W(3)] = Re s ‘dW 
” dtdr. 

Using equation (10) again, it follows that 

s 

I 
- 1 = Im(C,) x 

.J(t-l)J~J;I:-m)J(n-t). 

(16) 

The integrals in equations (15) and (16) are given the 
symbols I,, I,, respectively. Eliminating Im(C,) from 
these last two equations gives 

Q = IelI,. (17) 

(a) 

/ 

(b) 

1 1 6 5L 3 2 

It=-001 It=mI It=01 (t=l) (1=nl lt=m) 

FIG. 2(a). The ‘logarithmic hodograph’ or R-plane. (b) The 
complex potential or W-plane. (c) The auxiliary t-plane 

indicating homologues of points in R- and W-planes. 
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From equations (12b) and (16) and using the fact that 
a = a’/a and b = b’,ia, it follows that 

k(T; - T:) I, 1 =-=_ 
ha’(7’; - T;) E, a 

and 

k(T; - Tl) - I, 1 

hb’( r; - T,) = E, = b. 

The parameters on the left-hand sides of these 
equations are given the symbols K,, Ks, respectively. 
Hence 

K, = IS/Es and Kz = -13/E,. (18) 

Also 

KJK, = a’fb’ = aJb. 

Thus the procedure to effect a solution to a given 
problem is as follows 

(a) specify values for m and n (in preference to a, b 

when as indicated later some interpolation would 
be required) 

(b) calculate 13, 16, E,, E3 (see also Appendix); 
(c) hence calculate Q from equation (17) 

(d) calculate the coordinates (x, y) of the interface 
using equations f 14). 

RESULTS AND DISCUSSION 

(a) Square-section pipe 
From equations (12a) it can be seen, in the case 

a =b, that the values of m, n must satisfy n = 1 -tn. The 
coordinates of the interface, found from repeated 
evaluation of equations (13), are indicated in Fig. 3 for 
seven pairs of (m, n) and the corresponding values of 
K,. Evidently (m, n) are not single-valued functions of 
K1 in that for similar values of K,, (m, n) take on totally 
different values. This interesting conclusion is ex- 
plained further by the dependence of Q on K, as shown 
in Fig. 4, where it can be seen that Q takes two values 
for the same value of K, for a range of K,. A plot of Q 
against the dimensionless solidified layer thickness d/a 

shows in Fig. 5, as expected, that Q decreases mono- 
tonically as the thickness increases. 

From the definition of K, (or K2) it can be seen that 
as the pipe-wall temperature (TW) increases, K, de- 
creases. There are now two distinct cases to be 
considered (see Figs. 4 and 5) 

(a) if the thickness of the layer is less than a critical 
thickness of about 0.61, corresponding to a value 
of K, = 0.397, then as T: increases, the layer thins 
and Q, Q increase; 

(b) if the thickness of the layer is greater than this 
critical value, then as TW increases, the layer 
thickens and Q, Q de-crease. 

This ‘critical thickness phenomenon’ has its well- 
known counterpart in the external lagging of pipes. 

(b) Non-square section pipes 
To solve for the non-square pipes, values of (m, n) are 

chosen such that n # 1 - m. As a particular example 
for inclusion here, it was decided to concentrate on the 
pipe for which a/b = K,/K, = 2. The pairs of values 
for (m, n) corresponding to this case (and all other 
cases) are easily determined since over small ranges it 
was found that for a given m (or n) the function K,jK, 
varied linearly with log, n (or log, m). The interfacial 
shapes for various values of K, are shown in Fig. 6, 
where both the X- and y-coordinates are normalized 
with respect to the pipe dimension a. Also the de- 
pendence of Q on K, can be seen in Fig. 7. 

Not surprisingly, the same feature as for the square- 
section case occurred, namely that a critical thickness 
was found. 

CONCLUSIONS 

A method has been presented for the determination 
of the steady-state shape of the interface forming 
between a solidified layer and a warmer tlowing liquid 
inside a cooled pipe of rectangular cross-section. The 
method involved the application of conformal trans- 
formation techniques in conjunction with the logarith- 
mic hodograph plane in such a way that neither 
iteration nor any approximation techniques were 
required. For various values of the parameters II, and 
K2, the heat transfer to the cooled wall of the pipe was 
calculated and it was found that, in the square-section 
case, a critical thickness for the layer of about 61% of 
the pipe width occurred. Below this critical value, as 
the wall temperature increases, the layer thins, whilst 
above the value, the layer thickens. As expected, the 
heat transfer increases as the layer thins and vice versa. 
Similar findings were also made in the non-square 
case. 

The method, as it stands, can be further generalized 
to cover the cases when the interfacial heat transfer 
coemcient is not constant. A non-constant value would 
simpfy imply a non-rectilinear portion in the G-plane, 
easily accommodated by the method of [20]. Finally, 
polygonal cross-section pipes can also be analysed and 
this is to form the basis of a future paper. 
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3. 
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FIG. 3. The solidified layer profiles in the square pipe for various K, and the corresponding (m,n). 
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FIG. 4. The variation of the dimensiotkss heat transfer for 4 with Ki for the square pipe. 
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Layer thickness d/o 

FIG. 5. The variation of & with the dimensionless layer thickness d/a, showing critical values, for the square 
pipe. 
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FJG. 6. The solidified iayer pro&s in the pipe for which a/6 = I(,/& = 2 with the corresponding K,. 
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APPENDIX 

All of the integrals II, I,, I,, I,,, I,, I, have poles in their 
integrands at the upper and lower limits. Thus special 
treatment is required for their satisfactory evaluation. The 
integrals I,, I,, I,, I, involve the square root of a cubic in t in 
the denominator whilst in I, and I6 there is a quartic. In all 
cases the substitution t = (A sin 4 + B)/(C sin 4 + D) is made 
(-a/2 i 4 < n/2) and the integrals are reduced to the 
Legendre integral of the first kind. Then 

r, = (AD - EC) 
I G 

F(r$,K) (for all i) 

where A, I?, C, D, G, K are constants whose values depend on 
the roots of the polynomials in the integrands and also on the 
range of integration. 4 is the usual amplitude. (An excellent 
treatise on the evaluation of such integrals is given in [lS].) 

The evaluation of the Legendre functions was effected by a 
numerical technique based on an arithmetic-geometric series 
discussed in [19]. A batch of programs written in basic for 
processing on a DEC PDP8 computer were used for this 
evaluation. 
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LA SOLIDIFICATION BIDIMENSIONNELLE DANS DES CONDUITES A SECTION 
RECTANGULAIRE 

R&nn&Une mkthode de transformation conforme est appliquke B la d&termination de la forme de 
l’interface entre une couche solidifi&e B I’intbieur d’une conduit& refroidie B section rectangulaire et un liquide 

plus chaud en Icoulement. Le transfert thermique par convection du liquide sur l’interface, dans le cas 
stationnaire, contre-balance le transfert par conduction B travers la couche solidifile. Ce transfert de chaleur 
est calculC en fonction d’un paramttre adimensionnel relatif au coefficient de convection interfaciale et la 
conductivit6 thermique de la couche. On trouve que le developpement de la solidification rCvt+le une 

caractlristique ‘d’epaisseur critique’. 

ZWEIDIMENSIONALE ERSTARRUNGSVORGANGE IN ROHREN MIT 
RECHTECKQUERSCHNITT 

Zusammenfassung-Es wird eine Methode der konformen Abbildung zur Bestimmung der Form der 
Phasengrenzflllche zwischen einer erstarrten Schicht, welche sich an der Innenseite eines gekiihlten Rohres 
mit Rechteckquerschnitt bildet, und einer wtimeren striimenden Fliissigkeit angewandt. Der konvektive 
Wlrmeiibergang von der Fliissigkeit an die Phasengrenzfl5che ist im stationiren Fall genau so grol3 wie der 
Wtimetransport durch Leitung in der erstarrten Schicht. Dieser Wtirmetibexgang wird fiir Rohre mit 
verschiedenen Seitenverhgltnissen als Funktion eines dimensionslosen Parameters berechnet, welcher den 
Wtirmeiibergangskoeffizienten an der PhasengrenzflLhe und die Wlrmeleitfihigkeit der Schicht enthiilt. Es 

wurde festgestellt, da13 fiir das AusmaB des Erstarrens eine kritische Dicke charakteristisch ist. 

IKCJIEfiOBAHHE nPOLIECCA ABYMEPHOl-0 3ATBEPAEBAHkUl B TPY6AX 
llPflMOYl-OJIbHOl-0 CE’JEHMII 

AHHOTPIIIN- &HI onpenenemin @opMbl rpaHsub1 pasnena Memny saTeepneBmm4 cnoeM Ha BHY- 

TpeHHefi nOBepXHOCTH OXJlanReHHOti Tpy6bI npRMOyrOJlbHOr0 Ce’leHHII H IIOTOKOM %WnKOCTW C 6onee 
BbICOKOfi TeMnepaTypOi? HCnOJlb3ye-rCa MeTOLl KOH$OpMHOrO npeO6pa3OBaHnB. B CTalUiOHapHbIX 

ycno~~nx KonWqecT90 -renna, nepenamioro TennonpoBonnoc7bm repes saTeepneemui4 cnofi. ypaeso- 
BemUBaeTCIl KOHBeKTHBHbIM nOTOKOM TenJla OT XZUIKOCTH K IlOBepXHOCTn pa3nena. TaKoA TenJlOBOfi 

~~ZJKHM KaHaJlOB C pa3JlHWfblMB 3HaWHHIIMH OTHOIlleHHIl CTOpOH XapaKrepH3yeTCB 6e3pasMepHbrhi 
napaMeTpoh4. COJlep~aUIHM KO+$HUHeHT Me;lc@a3HOfi KOHBeKUHH li Ten,IOnpOBO,IHOCTb CJIOR. 

HaAneHo, w0 cTeneBb 3areepnesaHHn xapaKrepw3yeTcn 0npenenetnioA ccKperesecKoti Tonmwttob) 
cnou. 
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